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The isoperimetric problem (IP) of profiling the optimum outer shape of the gap of a dosed hydrodynamic journal bearing of 
infinite length is formulated and solved in the incompressible "non-cavitating" fluid approximation. Whereas the maximum of 
the carrying capacity coefficient CN is realized in the Rayleigh problem (RP), in the IP a minimum of the coefficient of the friction 
moment Cu on the neck (shaft) for given Ct¢ is achieved. The structure of the optimum solution is established and it is shown 
that if CN is less than the coefficient CuR corresponding to the RP, the optimum gap height h is a continuous function of the 
polar angle 0. In the general case the optimum function h = h(O) contains segments of four kinds. Two of them, h ~ 1 and h -~ 
H > 1, are boundary extremum segments (BES1) and BES/-/), which appear due to the fact that h has lower and upper bounds 
(h is measured relative to the minimum admissible height). The other two segments are two-sided extremum segments--TES. 
The first of these, TES1, is similar to the TES in Rayleigh's problem, in which h m hi where 1 < hi < H. TES2 appears only in 
the IP. For CN > 0.75C~x BES1 divides TES2 in two. The first part has a negative slope, and the second has a positive slope and 
connects BES1 with BESH or TES1. As CN-o CNn the slopes of the tangents to TES2 approach -+ o,, and the segments themselves 
turn into two steps, i.e. into the well-known discontinuities of h in the RE Unlike the IP for a slider, the optimum gap of a journal 
bearing on TES2 can either be converging or diverging. Results of calculations are given to illustrate the theoretical analysis. 
© 1999 Elsevier Science Ltd. All rights reserved. 

Improving hydrodynamic journal bearings, widely used in various applications [1-3], involves the problem 
of profiling the optimum gap. Rayleigh was the first to carry out research on this problem [4]: in the 
approximation of an incompressible viscous fluid he found that the maximum of CN of a cylindrical 
slider bearing is given by a piecewise-constant gap with one step. Over the initial segment TES1 the 
gap height h - hR > 1 satisfies Euler's equation. The terminal segment h -- 1, where h is divided by 
the minimum admissible height h m according to the formulation of the problem, is a boundary extremum 
segment (BES1). The solution of the RP for a journal bearing also has a step structure [5-9]. 

Other interesting variational problems, apart from the RP, include the minimization of the drag 
coefficient CD or friction moment CM for fixed CN, The first attempt at its solution for a slider was made 
in [10], and completed in [11]. A similar isoperimetric problem for an infinite journal bearing is 
formulated and solved below. 

1. Let r, 0, z be cylindrical coordinates with z axis in the direction of the axis of the bearing shaft. 
The shaft of radius R rotates counter-clockwise with angular velocity to. The equation of the generator 
of the fixed cylindrical "base" of the bearing (Fig. la) is r = RI(0). The gap height h(0) = R I ( 0  ) - R is 
such that 0 < h ~ R. In variables x = 0/(2n) and y = r - R (0 ~< x ~ 1, 0 ~< y ~< h), the equations of 
flow in the gap are the same as those in the gap of a two-dimensional slider moving over an infinite 
plane. The difference lies in the expressions for the forces and in some of the boundary conditions. 
The gap shape is defined by its "upper" boundary h(x), which is the bearing base. In general, h(x) can 
have a step (or steps) atx = xa (Fig. lb). We shall denote quantities at points 0,f, d , . . .  by appropriate 
subscripts. If the variables have a discontinuity at d, we shall use an additional subscript minus (plus) 
before (after) it in the direction of rotation. The viscosity of the fluid I.t and its density p are constant. 

We introduce dimensionless variables, taking as the scale of r, y and h, the peripheral component of 
the velocity u, the density and the pressure, the dimensional radius of the shaft R, the minimum 
admissible gap height hm, U = Rto ,  p and ypU 2 with the dimensionless complex 

= 12~dClx I(ph2U) = 12gl a/(ph2to) = 6p. I(ph2mn) 

where all the variables are dimensional, to = 2nn and n is the number of rotations in unit time. 
In lubrication theory with piecewise-continuous function h(x), the pressure is a continuous function 

ofx which is independent ofy. We shall use the equation forp in two forms 
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1) L "  h - q - P  "h3=O, 2) p ' = ~ ;  q = 2Q - 2 S udy (1.1) 
0 

Here Q is the lubricant flow rate through the clearance, and the prime denotes differentiation with 
respect to x. For any given pieeewise-continuous function h(x) the constant p is chosen to satisfy the 
condition for periodic pressure 

p ( 0 )  = p ( 1 )  - -  P0 (1.2) 

In the RP [5-9] the pressure P0 or, to be more precise, the pressure Pd in one of the sections of the 
gap jump is assumed given. However, as we shall see, this is not necessary. 

Let Y and X be the dimensional vertical and lateral components of the force N acting on the shaft 
due to the non-uniform pressure distribution p over its surface, and let M be the friction moment (Fig. 
la). The coefficients C. t, Cx and CM are given by 

y l X I 
Cr - 2m~"tP U2 =-~ o pcos0dx, Cx - 2~R~ U2 = ~ o psin0dx 

(1.3) 
M 1 I 

C ~ - R h ,  n,tpU2=-~!(-~h+hp')dx; 0=2Wx 

The expression for C~ is identical to the expression for the drag Co of an infinite slider bearing [11]. 
There are consequently a number of analogies and similarities in the solutions of the two problems. 

In the RP we seek a distribution of the gap height h = h(x) which, forp  defined by Eq. (1.1) and 
condition (1.2), gives a maximum of the carrying capacity coefficient CN = "/(Cy 2 + C~). In the IP C~v 
is fixed and CM is minimized. Of course, C~v ~< CNR, where CNn, is the largest possible carrying capacity 
coefficient obtained in the RE 

In both problems the clearance height consistent with the choice of scale has a lower and upper limit 

1 <~ h(x) <~ H ( 1 . 4 )  

with a given constant H > 1. 
We should emphasize that the dimensional minimum admissible gap height hm stipulated in the 

formulation of the problem is determined by considerations of a physical nature (the surface roughness)~ 
the presence of solid impurities in the lubricant, possible vibration of the bearing shaft, etc.). According 
to [11], in the IP for small CN, the minimum height of the optimum gap of a two-dimensional bearing 
hmin > hm. It will become clear below that the same applies in the IP for the optimum gap of a journal 
bearing. On the other hand; in the RP and for large CN in the IP hmin > hm. This is easily explained. 
In fact, in the RP in the approximation of lubrication theory if there is no specified hm for which a 
decrease is inadmissible owing to "external" constraints, the carrying capacity N of a slide or bearing 
increases without limit as hmin ~ 0 without optimum profiling of the gap, so that the variational problem 
actually becomes meaningless. Of course, the fact thatN increases without limit a s  hmi n --'-> 0 is the result 
of ignoring surface roughness and other effects, and the existence of these makes it necessary to specify 
hm. Incidentally, it is only if hm is taken as the scale of gap height that there can be a BES1 on which 
h = 1, and we can have f~h >1 0. But if, in the absence of hm, h is taken relative to hmi n, then, for h = 1, 
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admissible values of 6h can be of any sign, and there can be no BES1. Although this was appreciated 
by Rayleigh, it is unfortunately not always understood by present-day authors. The consequence of this 
mistake [10] was analysed in [11]. It applies for similar reasons to the variable H, which is also defined 
from "external" considerations. 

2. To solve the IP and the RP we write the Lagrange functional 

! C r  = cos0 j  (2 .1)  
0 

,vhere L is the left-hand side of the first equation of (1.1), ~, is a variable Lagrange multiplier, (x = 0 
and 13 = 1 in the RP and o~ = 1 and [3 is a constant Lagrange multiplier in the IP. The coefficient CN 
corresponds to the resultant force acting on the shaft in the direction 0 = 01. In both problems for 
admissible variation the variations of J and the optimized functional of (1.3) are the same for any limited 
Lagrange multipliers. As a result, for the optimum gap in the RP 8I = 8C~v ~ 0 and in the IP RP 8 / =  
6CM 1> 0 for any variation of h which satisfies conditions (1.4). By varying J and taking account of the 
continuity ofp in sections d of a possible jump ofh and the known rules for determining the variations, 
we arrive at an expression for 8/which holds for any (not necessarily optimum) gap height h(x) and 
arbitrary limited ~,(x) and 13 

! I 
qSJ = {(z(h_ - h + ) / 2  +(kh3)+ - (~h3)_}aApa+X,  t A x d - A q S  2~dx+S (ahSh+AP~_)p)dx (2.2) 

0 o 

X a = tz(hS j - h~. l) 16 + ~,_ (h - q)_ - Z+ (h - q)+ 

A h = A B I ( 6 h 3 ) ,  A = 2 h  - 3 q ,  B = ot - 6Zh 2 

AP = --~ cos (0 - 0t) - (o0~ - 2~3)'/2 

Here Apd and Axe are the differences between the values ofp  and x over the sections corresponding 
to the jump ofh for the varied and non-varied gaps, while ~ and 8h are the variations ofp  and h, that 
is, the differences for the same gaps for fixed x, the terms with Ape and Axe being summed over all sections 
of the jump of h. The coefficients Xd, A and B are transformed taking account of the expressions for 
p" from (1.1). 

Using the arbitrariness in the choice of ~ we make the coefficientA p equal to zero. This leads to the 
first-order ordinary differential equation 

(OOl - 2 ~ I i 3 ) '  = - 2 ~  COS ( 0  - 01)  (2.3) 

which holds for any gap over the continuity segments of h. If there are k sections of discontinuity of h, 
we can obtain conditions relating Ed- to ~,j+ in all, apart from one of these, by equating the coefficient 
of Apd to zero. This gives 

(z(h_ - h+)a + 2[(Zh3)+ - 0,h3)_]d = 0 (2.4) 

By (2.4) the expression in brackets in (2.3) is continuous in the (k-1)th ofk sections of the discontinuity 
of h. When x changes by one, 0 changes by 2~. Thus, integrating (2.3) from the point d+ to the point 
d_, corresponding to the kth jump h, and allowing for condition (2.4) in other sections of discontinuity 
of h, we find that the same condition is satisfied on the kth jump h. By condition (2.4), expression (2.2) 
for 6/does not contain any of the increments dpa at any point of a jump ofh. It is therefore unnecessary 
to flxpd ofp0 when formulating the RP and IP. 

Conditions (2.4) at points of discontinuity ofh are insufficient for determining ~,. The missing condition 
can be obtained by equating the coefficient of At/to zero 

! 

[ ~ x = 0  (2.5) 
0 

Equations and conditions (2.3)--(2.5) state the adjoint problem for the multiplier ~. 
Suppose h(x) is a given function. We can integrate Eq. (1.1) for arbitraryp(0) = P0 and choose the 

flow rate q, solving the direct problem of lubrication theory to satisfy the condition of periodic pressure 
from (1.2)p(1) = P0 in a cyclic circuit of the shaft. In the case of an incompressible lubricant Eq. (1.1) 
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contains p" but not p. The value obtained for q and all the other results are thus independent of the 
choice of p0. Once we have solved the direct problem, we can solve the adjoint problem where, in a 
solution of (2.3) which is linearly dependent on k0 = ~,(0), ~0 can always be chosen to satisfy condition 
(2.5). Then for any (not necessarily optimum) gap the expression for ~/will become 

I 
txl ffi XaAx a + l Ah~ tx  (2.6) 

0 

X d = {-6-~-[3q, + h.,(h~-3h~)]+ Z÷f} h+-h_.h~ 

f=h+h_(h+ +h÷h_ +h2_)q 
A h = AB/(6h3), A --. 2h - 3q, B = a - 6ZA 2 

Both of the equivalent representations of the coefficient Xd (with upper or lower sign in subscripts) 
are obtained from the corresponding coefficient of (2.2) by eliminating either ~_ or ~.+ using condition 
(2.4), which holds on jumps of h. 

In the RP in which a = 0 and 13 = i, analysis of expression (2.6) shows that in general the optimum 
gap can consist of segments of three kinds. These are BES1. where h -= 1, BESH where h --- H and 
TES1. On TES1, the value of h is defined by the condition A & = 0, or, what is the same thing, A = 0, 
that is, by the equation 

2h - 3q = 0 (2.7) 

By (1.4) admissible ~h are non-negative on BES1, and admissible ~h are non-positive on BESN. Since 
admissible variation of the optimum gap in the RP can lead only to a reduction of CN, ~ / =  6CN are 
non-positive in that problem, and the optimality conditions of these segments are in the form of 
inequalities 

~ 3 q  - 2/-/) ~ 0 on BESN 
(2.8) 

~ 3 q - 2 )  ~ 0 on BES1 

In general, different segments can be joined together with or without jump of h. For an optimum 
"discontinuous" joint in the RP the coefficient of A~a in (2.6) in the section of the jump of h must be 
zero, i.e. Xa = 0. In the RP where a = 0 this means that a discontinuous joint between TES1 and any 
of the segments of the boundary extremum is possible only if in the section of the jump of h 

By (2.7) and (1.1), on the TES1 

Zd_ = Zd÷ --- 0 (2.9) 

h = 3q/2, p'= l/(3h 2) (2.10) 

Hence for an incompressible lubricant h = const on TES1, and p is a linear function of x. Using 
conditions (2.5) and (2.7)-(2.9), it can be shown in the RP that the optimal function h(x) has two 
discontinuities, both of which lie either between BESH and BES1 if H < hR and simply no TES1 
exists, or between TES1 and BES1 when H > h, (Fig. lb). Thus, for an incompressible lubricant, in 
the RP the optimum gap is a step function witfa two steps. This result is known for H > hg, when 
the upper constraint on h is unnecessary in the RP [6-9]. At the same time, fixing p in one of the 
sections of the jump of h, which according to the formulation of the problem is superfluous, can lead 
to ambiguity. 

As an example, consider the "second" solution of the RP constructed in [9]. It is actually only nominally 
different from the "first" solution, the only difference arising from the fact that the scale o fp  is taken 
as the pressure at the inlet or outlet (in the direction of the shaft rotation) of BES1. In fact, at least 
for an incompressible lubricant, it is more natural to relate p 2 to pU rather than tO the pressure in any 
"typical" section, even when such exists (as in the case of a slide or journal bearing with open base). 

In the IP a = 1 andA h can vanish not only whenA = 0 which, as before leads to (2.7) and to TES1, 
but also when B = 0. In the second case 

6 2= I (2.11) 
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Thus in the IP part from the TES1 we can have TES2 on which h, by virtue of (2.3) and (2.11), is given 
by the equation 

h '=  -36 cos (0 - 00 

Like (2.8), in IP on BESH and BES1 we must have 

(1 - 62kH2)(2H- 3q) ~< 0 on BESN (2.12) 

(1 - 6~,)(2 - 3q) ~> 0 on BES./ 

If we substitute 2.+ or ~. of (2.11) into the formula for Xa of (2.6) with a = 1, then, as can be 
shown, Xd = 0 only when ha+ = ha. This means that the TES2 is joined continuously with other 
segments. 

3. The solution of the RP gives the largest value of CN of a bearing and a large (but not the largest) 
value of CM. When CN = 0, there are two limit shapes of the gap associated with the constraint on its 
height, h - H and h -= 1. In the first case the coefficient CM is a minimum (CM = 1/(6H) -4 0 and 
H -4 oo) and in the second, a maximum (CM = 1/6). As in [11], we start by constructing a solution of 
the IP in the extreme case where CN = 0. This happens for any h -= const, and CM decreases as the gap 
height increases. Thus for CN = 0 by virtue of the upper constraint on h, the solution of the IP is given 
by the equation 

It then follows from (1.1) and (1.2) that 

h(x) -- H (3.1) 

p(x) --- Po (3.2) 

For solution (3.1) to give a minimum of CM, the corresponding condition of (2.12) must be satisfied. 
Since according to (1.1), (3.1) and (3.2) in this case h - H -  q, we have 2/ t  - 3q = -q  < 0. Hence the 
first inequality of (2.12), a necessary condition for an optimal solution (3.1), is satisfied if 

1-6~,H 2~>0 for 0~<x~< 1 (3.3) 

Having found ~,(x) from the differentiated equation (2.3) with h from (3.1) and from condition (2.5), 
we obtain (01 = 0 is achieved by the choice of the origin of 0) 

~x)  = ~ sin (27tx)/(2rd'P) 

that is, X is a sinusoid ofx  with variation range -I  ]~1 ~< 2~Mat3 ~< 1131. Using this fact and (3.3) we can 
find a range of values of 13 in which the necessary condition for optimality, inequality (3.3), is satisfied. 
As in [11], the specific value of 13 from this range is chosen by the condition for a continuous transition 
from CN -- 0 to C N > 0. For such a transition to occur, we can have as small a positive coefficient 
C N as we please by introducing a small TES2 into the neighbourhood o fx  = x0 -- 0.75. Hence, for 
CN = 0 at the same value o fx  = 0.75 inequality (3.3) becomes an equality. Thus C g = 0 corresponds 
to 1131 = r /3. 

Unlike [11], in which a complete analytic solution was given of the IP for an infinite slider, we have 
solved the IP for a journal bearing numerically. However we have used many of the results obtained 
in [11]. In the numerical solution of the IP the differential equations are integrated successively over 
different segments taking into account the continuity of p, h and 3, at the points where they join. It is 
due to the presence of TES2, wherep and h can either increase or decrease, that it is possible to construct 
continuous solutions in the IP. 

The parameters of the problem to be determined, according to the equations and boundary 
conditions for given H and CN, are q, 13, ~,(0) and CM. The solution is independent of  the dimensionless 
complex 7 because of the scaling method and of the value P0 (for an incompressible lubricant), 
owing to the presence of only the derivativep in Eq. (1.1) forp. Nevertheless a certain value of p0, for 
example P0 = 0, must be assigned in the calculations. Each of the remaining four parameters must 
satisfy one of the conditions in the IP. Thus, 13 is chosen to obtain the given CN. Periodic pressure 
is secured by the choice of q. Finally, the value ~ = ~,(0+) is chosen to satisfy condition (2.5). In 
accordance with the results of Sections 1 and 2 the equations used to construct the above solution have 
the form 
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h u H ,  p ' = - ~ ,  k ' - ~ - e o s ( 2 n x ) = O  on BESN 

h=3q, , 1 2 P = 3 - ~ "  Z ' -  cos(2ro0=0 on TES1 

h' = -3[~cos(21r,¢), p" = , 2~ = ~ on TES2 

hml ,  p ' = l - q ,  Z ' - [ $ c o s ( 2 ~ ) = 0  -on BES1 

On each segment of the boundary extremum its optimality condition must be satisfied in the form 
(2.12). The calculation begins in the "initial" section x = 0, passes through all possible segments and 
ends at x = 1. According to the calculations, the section x = 0 contains BESH, or if it does not exist, 
TES1. When the optimality condition is violated for the current segment, a transition is made to TES2, 
then to BES1, then again to TES2 and, finally, to TES1 and to BESH. This completes the circuit over 
the shaft perimeter. Certain segments may be absent, depending on the values of CN and H. As already 
noted, TES2 is only absent when CN = CNR, when it degenerates into a jump of h. 

The solution of the RP plays a special part in the IP because the value CN = CNR corresponding to 
the RP is the maximum value of CN = CNR assigned in the IP. The solution of the RP, which is especially 
simple in the case of an incompressible lubricant, was obtained from the solution of the IP by taking 
the limit as [3 --> oo. This is done as C N ---> CNn by continuously reducing the length and simultaneously 
increasing the slope of TES2 (in absolute value). Thus, for [~ = -103, calculation gives 

qR '~ 1.2086, hR ~" 1.813, C~R ~' 0 .01345,  Cx~ = 0 
(3.4) 

01 = 0, CuR ~ 0.1441, 0d~ ~ -0.8276g, 0a2 ~ --0.1724~ 

These are close to the results obtained in [6-9]. The RP has a meaning for any constraints on h, 
including "rigid" values for which H < hg. In such cases the inlet TES1 of the optimum gap with h = 
hg is replaced by a horizontal BESH with h = H < hn. 

4. Figure 2 gives the parameters of optimum journal bearings designed by the above method. It shows 
con = CN/CNR and C ° = CM/CMR with CNR and CMR from (3.4). Since CN <~ CNR, 0 ~< con ~< 1. At the 
same time C°M can be larger than one, because the maximum value of C M = 1/6 ~ 0.167 is obtained for 
a gap with h --- 1, corresponding to the IP with H = 1. This gives a maximum value of ~ = 1.161. The 
numbers next to the curves or points in Fig. 2 indicate the values of H. All the curves for H I> h R = 
1.813 for certain ~ ~< 1 reach the "envelope" E, which corresponds to the IP when there is no upper 
limit on h (formally for H = oo, although for C0N > 0 the maximum values of h outside a small 
neighbourhood of the "origin of coordinates" are small). Two such curves are shown for H = 4 and 
H = 2. The points where they meet the envelope E are given the numbers 4 and 2. Above these points 

O.5 2 t a ~  4 

[ _ £$ 

o5  

Fig. 2. 
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a 
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the corresponding optimum gaps do not contain BESH, that is, the given upper limits on h are 
unessential. Below the point A on the curve E the optimum gaps do not contain BES1. The point A 
corresponds to ~ ~ 0.75. Hence, for con < 0.75 the lower limit on h is unessential in the solution of 
the IP. Similarly [11] it can be show that this part of the envelope is given by a "self similar" solution 
for which CON = k(CM) 2. The calculations give k = 1.094. 

The value H < h R ~ 1.813 corresponds to another type of solution. The curves do not meet the 
envelope E, but end when ~ > 1. There are two of them (H = 1.5 and H = 1.2) in Fig. 2. Their right- 
hand points correspond to the RP with the additional condition h ~< H < h R. The solution of this RP 
gives a step gap with h -= 1 f o r  Xdl < X < Xd2 and with h -- H for otherx, where Xdl ---~ 0.5 and Xd2 --4 1 
as H --~ 1. These solutions correspond to the points on the dashed curve. 

To compare optimum with non-optimum gaps, we chose the well-known "eccentric" journal bearing 
[1]. The outer boundary of its gap is formed by a circle with different centre from the shaft (Fig. lc). 
Let the shaft radius be R, the eccentricity of the bearing (displacement of the centres of the cylinders) 
be e "~ R, and let the axis of displacement be rotated through an angle 00. If 1 and H are the minimum 
and maximum gap heights, then 

h(O) = 1 + e { l  + c o s  (O - 0o)1, e = ( H  - 1 ) /2  

The results for such bearings are shown by the thin continuous curve in Fig. 2. The numbers refer 
to the values of H. As can be seen, the advantage of optimum gaps increases as C ° decreases. The 
coefficients C°M of the optimum and non-optimum bearings were compared for identical ~ and H. Some 
of the results are given below 

H 1.2 1.5 2 3 4 5 8 10 20 
C ° 0.44 0.76 0.88 0.76 0.60 0.48 0.28 0.2 ! 0.08 

C~ 1.08 1.0 0.95 0.89 0.85 0.80 0.70 0.65 0.49 

8 ~ ( % )  3.4 4.1 5.6 8 14 20 38 48 79 

Here ~ is the (percentage) excess of the coefficient CM of the non-optimum bearing over that of 
the optimum one. The maximum optimum gap height satisfying the condition h ~< H was less than H 
for H > 2. We see that fi~M increases monotonely as H increases. For values of H for which the carrying 
capacity of the eccentric bearing is closed to its maximum ( ~  = 0.88), ~"0M = 5.6% and increases rapidly 
as CON decreases, reaching 48% and 79% for ~ = 0.21 and 0.08, respectively. 

The gap geometry of the optimum bearings is simple, consisting either of two circular segments of 
constant height connected by two segments of variable height or (for small CN) of one circular segment 
and one segment of variable height. The coordinates of the boundaries of the segments of different 
types Oi (xi = Oi/2rc while ( /=  0, a, b, c and f) are shown in Fig. 3. The notation used in Fig. 3 and below 
is explained in Fig. l(a), in which the segment is a TES1 (or BES/-/) from 0 to a, a narrowing TES2 
from a to b, a BES1 from b to c, and a widening TES2 from c tof. According to Fig. l(a) 0c - 0b is the 
angular extent of BES1, and 0b - 0a and Of - 0c are the angular extents of the two TES2. 

Figure 3(a) corresponds to the envelope E of Fig. 2, Fig. 3(b) corresponds to H = 4, and Fig. 3c 
corresponds to H = 1.2. There is very little difference between the corresponding curves in the different 
figures. The greatest difference appears as C0N ~ 0, when the upper limit on h becomes important. Those 
of the functions 0i = 0 i (~ ,  H) that determine the extent of TES2 and BES1 depend closely on C °. 
The extent and position of TES1 are practically constant. The middle of the segment (BES2 or 
TES2) on which the gap height h is a minimum is always at 0 --- 3rt/2, and for large ~ the coordinates 
of its end and beginning are close to the values for the RP: 0a ~ 1.17~t and Of = 1.83m For 0.75 < C ° 
< 0.75 the minimum height of the optimum gap is equal to one, and for 0 < CON < 0.75 it is greater 
than one, tending to H as ~ ----> 0. 

For H = 4 Fig. 4 shows how the optimum gaps behave in the transition from CN = 0 to CN = C,VR. 
The curves 0, 1, 2, 3, 4, 5, 6 and 7 correspond to CON = 0.012, 0.035, 0.238, 0.421, 0.748, 0.901 and 
1. Initially the lower limit has now influence on the gap shape (for 0 < C ° < 0.75). Curves 3 and 4 
correspond to a "self-similar" solution for which neither the lower nor the upper limits on the gap height 
are unimportant. Ifh(x) is divided by its minimum or maximum value on them, they coincide. For 0.75 
< CON < 1 only the lower limit on h affects the shape of the optimum gap (curves 5 and 6). Finally, 
curve 7 corresponds to the RE The pressure distributions p(x) for the gaps in Fig. 4 are shown in 
Fig. 5. The largest pressure is obtained in the RP, which also gives the greatest carrying capacity. For 
all solutions of the IP the point of minimum pressure always lies on a TES2, which is widening in the 
direction of rotation of the shaft (or part of it), rather than at the origin of the TES1, as in the RE 
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Fig. 4. Fig. 5. 

Similarly, the point of maximum pressure is always on a narrowing TES2. In Fig. 5 the pressure for 
each gap is measured from its minimum value. 

The geometric and force parameters of gaps that give solutions of the IP for which the upper limit 
on h is unessential are summarized in the top part of Table 1, in which hmi n is the minimum gap height 
(hmi n ~ 1).  Its first row corresponds to the RP. The next five row refer to gaps for which there is an 
important lower limit on h. The other two rows (seventh and eighth without coordinates of the ends 
of the BES1 Xb and xc) correspond to a self-similar solution for which the lower constraint on h is 
unimportant. The lower part of the table gives the results for H = 2, for which the upper constraint on 
h is important. They are a continuation of the results in the third row. In the solution corresponding 
to the ninth row, both the lower and the upper constraints on h are important. Then, up to the limiting 
case h --- H with CN = 0, represented by the last row, the lower constraint on h is unimportant. 

We conclude by returning to the question of whether to assign the pressure in a "characteristic" section 
of a journal bearing. As we have seen, in both the RP and the IP it is superfluous to do so in the case 
of a journal bearing with a closed base. Although in [6-9] the pressure in one of the sections was assumed 
to be fixed in the RP, this did not and could not lead to any errors (the "second" optimum solution 
discovered in [9], as we have mentioned above, is the result of an ambiguity). Of course, this does not 
rule out technological solutions where the lubricant is supplied (for instance, in order to maintain the 
pressure level, preventing cavitation) along "supply channels" in the bearing base in certain sections 
of the gap. In that case, however, it is better not to fix the pressure a priori, but rather take it from the 
solution of the corresponding variational problem. 

The optimized parameter is not improved by the addition of further constraints which reduce the 
number of possible solutions, and in fact as a rule is made worse than in the original problem. This will 
happen, for instance, if a "linear" mass of lubricant--m (per unit length of shaft) is specified in the 
gap. Since this possibility is considered in direct calculations of the flow in closed journal bearings [1], 

Table 1 

1.21 586 586 914 914 1.81 1.00 1.345 1.441 
1.30 592 648 852 908 1.94 i .00 1.282 1.359 

1.34 593 670 830 907 2.00 1.00 1,230 1.323 

1.35 593 676 824 907 2.03 1.00 1.211 1.310 

1.40 594 697 803 906 2. I0 1.00 1,144 1.269 

i .50 594 742 758 906 2.25 1.00 1.006 1.189 

1.60 594 - - 906 2.40 1.06 0.880 1.110 
2.00 594 - - 906 3.00 1.33 0.566 0.892 

I A3 594 719 781 906 2,00 1.00 1.077 1,241 
I A7 595 - - 905 2.00 1.01 1.000 1.203 
1.5 595 - - 905 2,00 1.03 0.940 1.176 

1.6 598 - - 902 2,00 I. 14 0.750 1.090 
1.8 610 - - 890 2,00 1.40 0.380 0.943 

2.0 . . . .  2,00 2.00 0 0.830 
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the solution of variational problems with fixed m is of interest. Let v be a constant Lagrange multiplier, 
which introduces an integral representation for m in the Lagrange functional J, and rn0 is the value of 
rn obtained in the original variational problem. Then, omitting the details, it can be shown that the best 
value of the optimized functional corresponding to m = m0 is obtained for v = 0. We note, finally, that 
solutions obtained for a journal bearing of infinite length in the direction of its axis are not only of 
theoretical interest. Their use is quite justified in journal bearings of finite length in which it is difficult 
(in the ideal case, impossible) for the lubricant to spread in axial direction. This can be achieved by 
the use of lateral washers and seals [5]. 
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